Klasse: GY 23a

Fach: Mathematik (Kernfach)

Thema: Ganzrationale Funktionen (Linearfaktoren, Nullstellen, Horner-Schema)

Name:

Bitte geben Sie Ansätze und Rechenwege an!

1.) Horner-Schema (Praxis)

10

Bestimmen Sie die Funktionswerte mit dem Horner-Schema:

$$f(x) = -x^4 + 2x^3 + 3x^2 - 5x - 4$$
 für $x = -2$

	a 4	a ₃	a ₂	a ₁	a ₀
	-1	2	3	-5	-4
x = -2		2	-8	10	-10
Ergebnis	-1	4	-5	5	<mark>-14</mark>

$$f(x) = \frac{1}{3}x^3 - 4x^2$$
 für $x = 6$

	a ₃	a ₂	a ₁	a ₀
	1/3	-4	0	0
x = 6		2	-12	-72
Ergebnis	1/3	-2	-12	<mark>-72</mark>

2.) Nullstellen berechnen

24

Bestimmen Sie die Lösungen folgender Gleichungen:

a)
$$3x(2x-6)(x^2+4) = 0$$

$$3x(2x-6)(x^2+4) = 0 \rightarrow x=0 \text{ und } x=3$$

b)
$$6x^4 + 2x^3 = 0$$

$$(6x+2)x^3 = 0 \rightarrow x = 0$$
 [dreifach] und $x = -\frac{1}{3}$

c)
$$x^{n+1} - x^n = 0$$

$$x^n \cdot x - x^n = (x-1)x^n = 0 \rightarrow x=1 \quad und \quad x=0[n-fach]$$

d)
$$2x^2 + 8x - 4 = 6$$

$$2x^{2} + 8x - 4 = 6 \xrightarrow{-6} 2x^{2} + 8x - 10 = 0$$

$$\xrightarrow{abc-Formel} x_{y_{2}} = \frac{-8 \pm \sqrt{64 + 80}}{4} = \frac{-8 \pm \sqrt{144}}{4} = \frac{-8 \pm 12}{4}$$

$$\rightarrow x_{1} = \frac{-8 + 12}{4} = 1 \quad und \quad x_{2} = \frac{-8 - 12}{4} = -5$$

e)
$$-2x^{2} + 20 = 4x^{4}$$

 $-2x^{2} + 20 = 4x^{4} \xrightarrow{-4x^{4}} -4x^{4} - 2x^{2} + 20 = 0$
 $\xrightarrow{Substitution} -4u^{2} - 2u + 20 = 0$
 $\xrightarrow{abc-Formel} u_{1/2} = \frac{2 \pm \sqrt{4 + 320}}{-8} = \frac{2 \pm \sqrt{324}}{-8} = \frac{2 \pm 18}{-8}$
 $\rightarrow u_{1} = \frac{2 + 18}{-8} = -\frac{20}{8} = -\frac{5}{2} \quad und \quad u_{2} = \frac{2 - 18}{-8} = \frac{-16}{-8} = 2$
 $\xrightarrow{Re-Substitution} u_{2} = \frac{5}{2} \rightarrow keine \ L\"{o}sung \quad und \quad x^{2} = 2 \quad \longrightarrow \quad x_{1/2} = \pm \sqrt{2}$

f)
$$-x^2 - 4x + 2,5 = x^2$$

 $-x^2 - 4x + 2,5 = x^2 \xrightarrow{-x^2} -2x^2 - 4x + 2,5 = 0$
 $\xrightarrow{abc-Formel} x_{\frac{1}{2}} = \frac{4 \pm \sqrt{16 + 20}}{-4} = \frac{4 \pm \sqrt{36}}{-4} = \frac{4 \pm 6}{-4}$
 $\rightarrow x_1 = \frac{4 + 6}{-4} = \frac{10}{-4} = -\frac{5}{2} \quad und \quad x_2 = \frac{4 - 6}{-4} = \frac{-2}{-4} = \frac{1}{2}$

3.) Ganzrationale Funktionen I

4

Eine ganzrationale Funktion sei durch folgende Koeffizienten gegeben:

$$a_5 = 4$$
 $a_3 = 2$ $a_4 = a_2 = a_1 = a_0 = 0$

Wie viele Nullstellen hat diese Funktion mindestens, wie viele höchstens? Begründen Sie kurz Ihre Antwort.

=> Es handelt sich um eine Funktion 5. Grades; daher hat die Funktion mindestens eine und höchstens fünf Nullstellen.

Geben Sie die Vorschrift einer ganzrationalen Funktion 4. Grades an, welche die angegebenen Nullstellen und keine weiteren besitzt:

$$x_1 = x_2 = 3$$
 $x_3 = 1$ $x_4 = -2$

 $\Rightarrow f(x) = (x-3)^2 \cdot (x-1) \cdot (x+2)$

5.) Rekonstruktion ganzrationaler Funktionen (Grundstruktur)

18

Die ganzrationalen Funktionen aufgrund der gegebenen Eigenschaften haben folgende allgemeine Linearfaktorform:

$$f(x) = c \cdot (x - x_1) \cdot \dots \cdot (x - x_n)$$

Funktion 1: Grad 3; Nullstelle x = 1, Nullstelle x = -3 (doppelt) und P(2/2)

Funktion 2: Grad 4; Nullstelle x = -2 (zweifach); Nullstelle x = 3 (doppelt) und P(2/1)

a) Ermitteln Sie die Funktionsvorschrift der ganzrationalen Funktionen aufgrund der gegebenen Eigenschaften in der Linearfaktordarstellung.

Funktion 1:

$$f(x) = c \cdot (x-1) \cdot (x+3)^{2} \xrightarrow{mit} f(x) = \frac{2}{25} \cdot (x-1) \cdot (x+3)^{2}$$

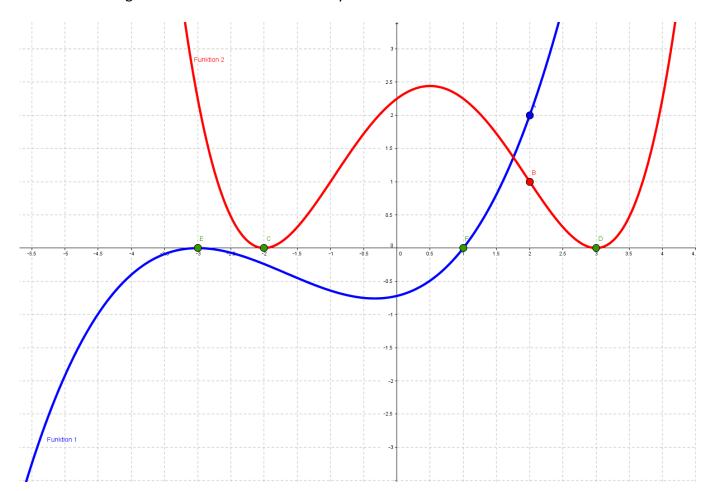
$$\xrightarrow{Punkt P(2 \mid 2) \atop einsetzen} f(2) = c \cdot (2-1) \cdot (2+3)^{2} = 2 \rightarrow c \cdot 1 \cdot 25 = 2 \rightarrow c = \frac{2}{25}$$

Funktion 2:

$$f(x) = c \cdot (x+2)^{2} \cdot (x-3)^{2} \xrightarrow{mit} f(x) = \frac{1}{16} \cdot (x+2)^{2} \cdot (x-3)^{2}$$

$$\xrightarrow{Punkt \ P(2|1) \atop einsetzen} f(2) = c \cdot (2+2)^{2} \cdot (2-3)^{2} = 1 \rightarrow c \cdot 16 \cdot 1 = 1 \rightarrow c = \frac{1}{16}$$

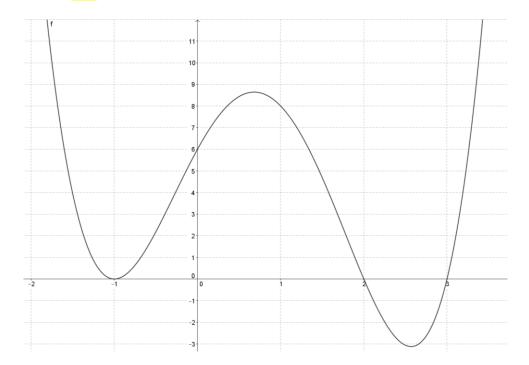
b) Zeichnen Sie die beiden ganzrationalen Funktionen aufgrund der gegebenen Eigenschaften in das Koordinatensystem:



6.) Funktion aus gegebenem Graphen bestimmen

10

Wie lautet die Funktionsgleichung des Graphen in Linearfaktorund Polynom-/Koeffizientendarstellung?



Linearfaktordarstellung: $f(x) = (x+1)^2 \cdot (x-2) \cdot (x-3)$

$$f(x) = (x^2 + 2x + 1) \cdot (x^2 - 5x + 6) = x^4 - 5x^3 + 6x^2 + 2x^3 - 10x^2 + 12x + x^2 - 5x + 6$$

 $Koeffizienten - / Polynomdarstellung: f(x) = x^4 - 3x^3 - 3x^2 + 7x + 6$