Musterlösung: 11. Jgst. 2. Kursarbeit Klasse: GY 04 a

Datum: 30.11.2004 Fach: Mathematik (Kernfach)

Thema: Gebrochen-rationale Funktionen; Summenzeichen

• Summen I: Bilden Sie die Summenausdrücke bzw. stellen Sie die Summen dar

a)
$$1+3+5+7+9+11 = \sum_{i=1}^{6} (2i-1)$$

b)
$$-\frac{1}{4} + \frac{2}{5} - \frac{1}{2} + \frac{4}{7} - \frac{5}{8} + \frac{2}{3} = \sum_{i=1}^{6} (-1)^{i} \frac{i}{i+3}$$

c)
$$1+4+9+16+25+36+49+64 = \sum_{i=1}^{8} i^2$$

d)
$$\sum_{i=2}^{7} (-1)^{i} \cdot i = 2 - 3 + 4 - 5 + 6 - 7$$

e)
$$\sum_{i=1}^{5} \frac{1}{2i} = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10}$$

2 Summen II: Errechnen Sie die Summen

a)
$$\sum_{i=1}^{75} \frac{1}{2}i = \frac{1}{2} \cdot \sum_{i=1}^{75} i = \frac{1}{2} \cdot \frac{75 \cdot 76}{2} = 1.425$$

b)
$$\sum_{i=100}^{400} i = \sum_{i=1}^{400} i - \sum_{i=1}^{99} i = \frac{400 \cdot 401}{2} - \frac{99 \cdot 100}{2}$$
$$= 80.200 - 4.950 = 75.250$$

Summen III: Beweisen Sie folgende Regel

$$\sum_{i=1}^{n} (a+i) = a \cdot n + \sum_{i=1}^{n} i$$

Beweis:
$$\sum_{i=1}^{n} (a+i) = \sum_{i=1}^{n} a + \sum_{i=1}^{n} i = a \cdot n + \sum_{i=1}^{n} i$$

4 Gebrochen-rationale Funktionen I

Untersuchen Sie die folgenden drei Funktionen:

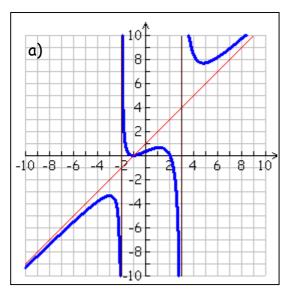
Definitionsbereich => Nullstelle(n); Polstellen; Lücken

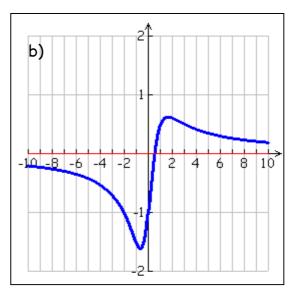
Asymptote =>

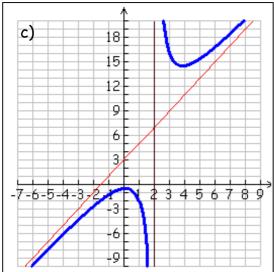
a)
$$f(x) = \frac{(x+1)^2(x-2)}{(x+2)(x-3)}$$
 b) $f(x) = \frac{2x-1}{x^2+1}$
c) $f(x) = \frac{2x^2-x+1}{x-2}$

c)
$$f(x) = \frac{2x^2 - x + 1}{x - 2}$$

Funktion	Polstelle	Nullstelle	Lücke	Asymptote
a)	x = -2	x = -1 (doppelt)	keine	a(x) = x+1
·	x = 3	x = 2		, ,
b)	keine	$X = \frac{1}{2}$	keine	a(x) = 0
c)	x = 2	keine	keine	a(x) = 2x+3





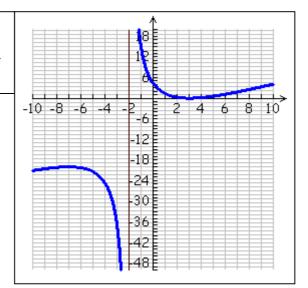


6 Gebrochen-rationale Funktionen II

Geben Sie gebrochen-rationale Funktionen mit folgenden Eigenschaften an und zeichnen Sie:

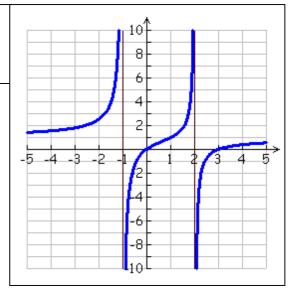
a) Polstelle mit VZW: x = -2; doppelte Nullstelle bei x = 3

 $f(x) = \frac{(x-3)^2}{x+2}$



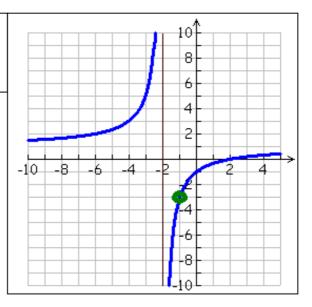
b) Polstellen: $x_1 = 2$ und $x_2 = -1$; Nullstellen bei $x_3 = 0$ und $x_4 = 3$

 $f(x) = \frac{x(x-3)}{(x-2)(x+1)}$



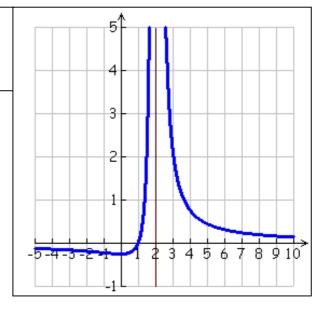
c) $D = \Re \setminus \{-2; -1\}$; Nullstelle: N(2/0); Lücke: x = -1

$$f(x) = \frac{(x-2)(x+1)}{(x+2)(x+1)}$$



d) Nullstelle bei x = 1; Polstelle ohne VZW bei x = 2

$$f(x) = \frac{(x-1)}{(x-2)^2}$$



0 Gebrochen-rationale Funktionen mit Parameter

a) Gegeben ist die Funktion
$$f(x) = \frac{x^2 - ax - 2a}{bx}$$

Für welche Werte von a und b hat f(x) eine Asymptote mit der Gleichung $t(x) = \frac{1}{2}x + 5$?

Lösung:
$$(x^2 - ax - 2a) : bx = \frac{1}{2}x + 5 | bx |$$
$$x^2 - ax - 2a = \frac{1}{2}bx^2 + 5bx$$

Koeffizientenvergleich:

$$x^{2} = \frac{1}{2}bx^{2} \implies b = 2$$

$$-ax = 5bx \implies -ax = 5 \cdot 2x \implies a = -10$$

b) Gegeben ist die Funktion
$$f_t(x) = \frac{tx^2 + 4}{(x-2)^2}$$

Für welche Werte von t hat die Funktion keine Nullstellen?

Lösung:

$$tx^{2} + 4 = 0 \implies x^{2} = -\frac{4}{t} \implies |x| = \sqrt{-\frac{4}{t}}$$

 $\forall t \in \Re^{-} \setminus \{-1\}$ existieren 2 Nullstellen
 $t = -1$ existiert eine Nullstelle: $x = -2$

Bestimmen Sie die Eigenschaften und Funktionsvorschriften folgender Funktionen aufgrund der Zeichnungen

Funktions-	Polstelle mit	Nullstelle	Lücke	Asymptote
vorschrift	VZW			
$f(x) = -\frac{x^2 - 1}{x^2 - 4}$	x = 2	× = 1	keine	a(x) = -1
	x = -2	× = -1		
$f(x) = \frac{x^2}{x^2 - 1}$	x = 1	x = 0 (doppelt)	keine	a(x) = 1
	x = -1			
$f(x) = \frac{x}{x^2 - 4}$	x = 2	x = 0	keine	a(x) = 0
	x = -2			

Schaubild a)

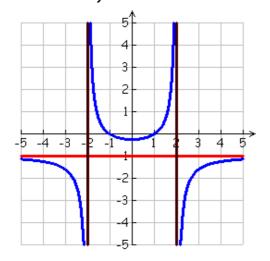


Schaubild b)

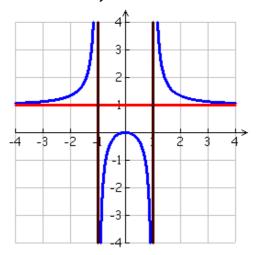
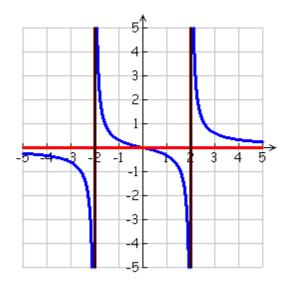


Schaubild c)



O Definieren Sie folgende Begriffe bzgl. gebr.-rat. Funktionen:

a) Polstelle

Nullstelle des Nennerpolynoms, die häufiger im Nenner- als im Zählerpolynom auftaucht; nicht behebbare Unstetigkeitsstelle; vertikale Asymptote

b) Nullstelle

Nullstelle des Zählerpolynoms, die nur im Zählerpolynom auftaucht

c) Lücke

Nullstelle des Nenner- und Zählerpolynoms, die häufiger im Zähler- als im Nennerpolynom auftaucht;

Behebbare Unstetigkeitsstelle

D Lösen Sie folgende Gleichungen:

$$2x^4 + 6x^2 - 3 = 5$$

$$2u^2 + 6u - 8 = 0$$

$$u_{\frac{1}{2}} = \frac{-6 \pm \sqrt{36 + 64}}{4} \implies u_{\frac{1}{2}} = \frac{-6 \pm 10}{4} \implies u_1 = -4 \land u_2 = 1$$

$$x^2 = -4$$
 nicht lösbar in \Re

$$x^2 = 1 \implies |x| = 1$$

$$x + 2\sqrt{x} - 1 = 7$$

$$u^2 + 2u - 8 = 0$$

$$u_{\frac{1}{2}} = \frac{-2 \pm \sqrt{4 + 32}}{2} \implies u_{\frac{1}{2}} = \frac{-2 \pm 6}{2} \implies u_1 = -4 \land u_2 = 2$$

$$\sqrt{x} = -4$$
 nicht definiert in \Re

$$\sqrt{x} = 2 \implies x = 4$$