Datum: 09.12.2009

Klasse: GY GS 02-08 Fach: Mathematik (Grundfach)

Thema: Newton-Verfahren; Rekonstruktion ganzrationaler Funktionen;

Ableitungen

1.) Ableitungen

Bilden Sie die 1. Ableitung zu folgenden Funktionen:

a)
$$f_t(x) = \left(\frac{2}{5}x^2 + tx - 3\right)^8$$

Lösung: $f_{t}'(x) = 8\left(\frac{2}{5}x^{2} + tx - 3\right)^{7}\left(\frac{4}{5}x + t\right)$

b)
$$f_t(x) = \frac{-x^2 + 2xt^2}{4x^3 + 1}$$

Lösung: $f_{t}'(x) = \frac{\left(-2x+2t^{2}\right)\left(4x^{3}+1\right)-12x^{2}\left(-x^{2}+2xt^{2}\right)}{\left(4x^{3}+1\right)^{2}}$

$$f(x) = \left(\frac{1}{x} + 3x\right) \cdot \left(\frac{1}{3}x^6 - \frac{1}{6}x^3\right)$$

Lösung: $f'(x) = \left(-\frac{1}{x^2} + 3\right) \cdot \left(\frac{1}{3}x^6 - \frac{1}{6}x^3\right) + \left(\frac{1}{x} + 3x\right) \cdot \left(2x^5 - \frac{1}{2}x^2\right)$

d)
$$f(x) = (3x-4) \cdot \sqrt{\frac{1}{4}x^2 - 2x}$$

Lösung: $f(x) = 3 \cdot \sqrt{\frac{1}{4}x^2 - 2x} + (3x - 4) \cdot \frac{\frac{1}{2}x - 2}{2\sqrt{\frac{1}{4}x^2 - 2x}}$

2.) Rekonstruktion ganzrationaler Funktionen I

Eine Parabel 4. Grades hat im Ursprung einen Sattelpunkt und einen Tiefpunkt in T (-2 / -8).

Bestimmen Sie die Funktionsvorschrift.

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

$$f'(x) = 4ax^3 + 3bx^2 + 2cx + d$$
 und $f''(x) = 12ax^2 + 6bx + 2c$

$$I.) \quad f(0) = e = 0$$

$$II.) \quad f'(0) = d = 0$$

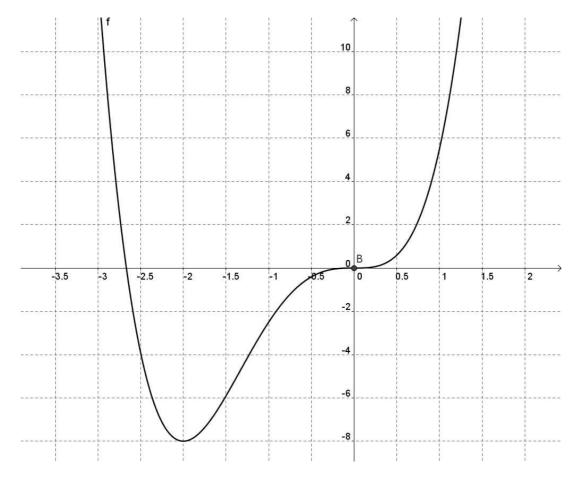
$$III.) \quad f''(0) = c = 0$$

$$IV.$$
) $f(-2) = 16a-8b = -8 \xrightarrow{\cdot 2} 32a-16b = -16$

$$V.$$
) $f'(-2) = -32a + 12b = 0$ $\xrightarrow{\ddot{U}bertrag}$ $32a + 12b = 0$

$$\xrightarrow{Additions verfahren} -4b = -16 \Rightarrow b = 4 \Rightarrow a = \frac{3}{2}$$

$$\Rightarrow f(x) = \frac{3}{2}x^4 + 4x^3$$



3.) Rekonstruktion ganzrationaler Funktionen II

Bestimmen Sie die hier beschriebene Funktion 4. Grades:

Der zur y-Achse symmetrische Graph vom Grad n = 4 geht durch P(0 / 2) und hat bei x = 2 ein Extremum; er berührt dort auch die x-Achse.

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

$$f'(x) = 4ax^3 + 3bx^2 + 2cx + d$$
 und $f''(x) = 12ax^2 + 6bx + 2c$

$$I.$$
) Achsensymmetrie: $b = d = 0$

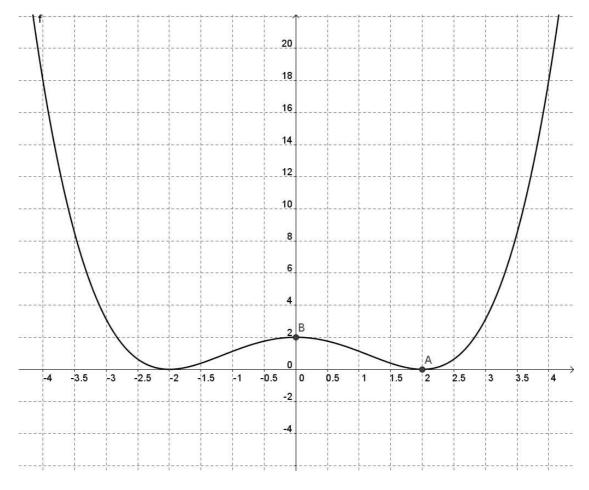
$$II.$$
) $f(0) = e = 2$

III.)
$$f(2) = 16a + 4c + e = 0 \xrightarrow{e=2} 16a + 4c = -2$$

IV.)
$$f'(2) = 32a + 4c = 0 \xrightarrow{\cdot (-1)} -32a - 4c = 0$$

$$\xrightarrow{Additions verfahren} -16a = -2 \Rightarrow a = \frac{1}{8} \Rightarrow c = -1$$

$$\Rightarrow f(x) = \frac{1}{8}x^4 - x^2 + 2$$



4.) Rekonstruktion ganzrationaler Funktionen III

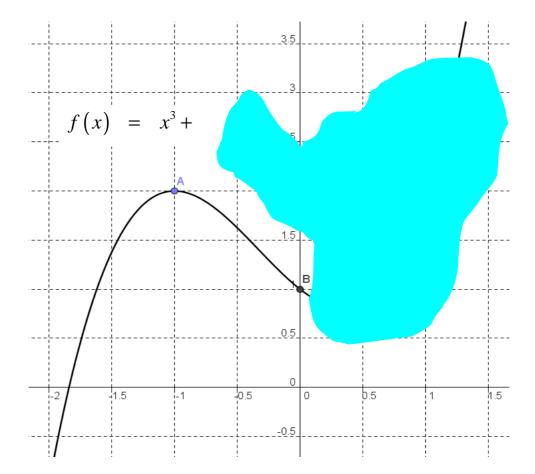
Auf dem Schreibtisch fand ich folgendes Diagramm, das leider etwas beschädigt ist. Glücklicherweise sind einige charakteristische Teile aber noch erkennbar.

- a) Welche Eigenschaften können Sie auf dem Schaubild erkennen? Lösung: Hochpunkt H (-1/2) Punkt B (0/1)
- b) Wie lautet der allgemeine Funktionsterm? Lösung:

$$f(x) = ax^3 + bx^2 + cx + d$$

 $f'(x) = 3ax^2 + 2bx + c$ und $f''(x) = 6ax + 2b$

c) Bilden Sie die notwendigen Ansätze und erstellen Sie die Funktionsvorschrift.



Lösung:

$$f(x) = ax^{3} + bx^{2} + cx + d$$

$$f'(x) = 3ax^{2} + 2bx + c \quad und \quad f''(x) = 6ax + 2b$$
I.) $a = 1$
II.) $f(0) = d = 1$
III.) $f(-1) = 1 \cdot (-1)^{3} + b(-1)^{2} + c(-1) + 1 = 2$

$$\Rightarrow (-1) + b - c + 1 = 2 \Rightarrow b - c = 2$$
IV.) $f'(-1) = 3 \cdot 1 \cdot (-1)^{2} + 2b(-1) + c = 0$

$$\Rightarrow 3 - 2b + c = 0 \Rightarrow -2b + c = -3$$

$$\xrightarrow{II.)+IV.} -b = -1 \Rightarrow b = 1 \Rightarrow c = -1$$

$$\Rightarrow f(x) = x^{3} + x^{2} - x + 1$$

5.) Newton-Iteration

a) Gegeben seien die Funktionen f(x) und g(x) mit den Funktionsvorschriften:

$$f(x) = -\frac{1}{4}x^3 + 2$$
 und $g(x) = -x^2 + 4x$

Berechnen Sie nun mittels Iteration eine Schnittstelle der beiden Funktionen für die gilt: x > 0

$$f(x) = g(x) \Rightarrow -\frac{1}{4}x^3 + 2 = -x^2 + 4x$$

$$h(x) = -\frac{1}{4}x^3 + x^2 - 4x + 2 \quad und \quad h'(x) = -\frac{3}{4}x^2 + 2x - 4$$

n	X _{n+1}	f(× _n)	f '(x _n)	$x_n - f(x_n)/f'(x_n)$
0	1	-1.25	-2.75	0.545454
1	0.545454	0.0751314	-3.132231	0.569441
2	0.569441	0.00033659	-3.104315	0.569549

b) Bestimmen Sie den Wert von $\sqrt[3]{15}$ mit der Newton-Iteration mit geeignetem Startwert in zwei Iterationen.

Lösung:
$$f(x) = x^3 - 15$$
 und $f'(x) = 3x^2$

Startwert: x = 2

n	× _{n+1}	f(× _n)	f '(x _n)	$x_n - f(x_n)/f'(x_n)$
0	2	-7	12	2.5833333333
1	2.583333	2.2401620	20.0208333	2.47144178518
2	2.471441	0.09562696	18.3240734	2.46622313289
3	2.466223	0.00020178	18.2467696	2.46621207438

Startwert: x = 3

n	X _{n+1}	f(x _n)	f '(x _n)	$x_n - f(x_n)/f'(x_n)$
0	3	12	27	2.5555555
1	2.555555	1.68998628	19.592592	2.4692991
2	2.4692991	0.05639950	18.292315	2.4662159

6.) Gebrochen-rationale Funktionen

Gegeben sei die Funktion f(x) mit der Funktionsvorschrift

$$f(x) = \frac{x^2 + 2x}{x - 1}$$

Bestimmen Sie folgende Eigenschaften und zeichnen Sie den Graphen:

a) Definitionsmenge

Lösung:
$$D = \Re \setminus \{1\}$$

b) Null- und Polstellen

Lösung:

Zählernullstellen:
$$x(x+2) = 0 \implies x_1 = 0 \land x_2 = -2$$

⇒ Nullstellen der Funktion

Nennernullstelle:
$$x-1 = 0 \implies x=1$$

⇒ Polstelle der Funktion

c) Asymptote

$$(x^2+2x):(x-1) = x+3+\frac{3}{x-1}$$

Lösung: Polynomdivision:

Asymptote:
$$a(x) = x+3$$

d) Extremwerte (notwendige Bedingung)

$$f'(x) = \frac{(2x+2)(x-1)-(x^2+2x)\cdot 1}{(x-1)^2} = \frac{2x^2-2x+2x-2-x^2-2x}{(x-1)^2}$$

$$f'(x) = \frac{x^2 - 2x - 2}{(x - 1)^2} = 0 \implies x^2 - 2x - 2 = 0$$

$$x_{\frac{1}{2}} = \frac{2 \pm \sqrt{4+8}}{2} \implies x_1 = 2,7 \land x_2 = -0,7$$

$$\Rightarrow$$
 $f(2,7) = 7,46 [=Min] \land f(-0,7) = 0,53 [=Max]$

