Musterlösung

12. Jgst.

2. Test

Datum: 24.11.2009

Klasse: GY GS 09-08 Fach: Mathematik (Grundfach)

Thema: Newton-Verfahren; Rekonstruktion ganzrationaler Funktionen

1.) Newton-Iteration

a) Berechnen Sie die Nullstelle dieser Funktion mittels zweier Iterationen:

$$f(x) = -x^3 + 3x - 3$$

Lösung:

$$x = -210383$$

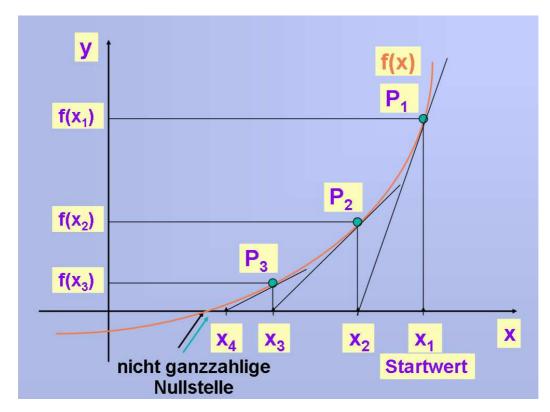
Nullstelle:
$$x = -2,10383$$
 Startwert: $x = -2$

n	X _{n+1}	f(x _n)	f '(x _n)	$x_n - f(x_n)/f'(x_n)$
0	-2	-1	-9	-2.111111
1	-2.1111	0.07544581	-10.37037	-2.1038359

b) Erläutern Sie die Herleitung der Formel zur Newton-Iteration (in graphischer und verbaler Form).

Lösung:

Iterationsverfahren zur Bestimmung (nicht - ganzzahliger) Nullstellen von Funktionen



Vorgehensweise:

- (1) Startwert x_0 festlegen
- (2) Folgewerte mit Formel ermitteln:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 mit $f'(x_n) \neq 0$

c) Welche Voraussetzung muss erfüllt sein, damit die Iterations-Formel anwendbar ist?

Lösung:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $mit \quad f'(x_n) \neq 0$

- d) Wie könnte man den Wert von $\sqrt[3]{10}$ mit der Newton-Iteration bestimmen?
- Lösung: Die Nullstelle der Parabel $f\left(x\right)=x^3-10$ mit dem Newton-Verfahren berechnet würde den Wert $\sqrt[3]{10}$ darstellen.

2.) Rekonstruktion ganzrationaler Funktionen

a) Wie viele Bedingungsgleichungen benötigt man, um eine ganzrationale Funktion von Grad 3 eindeutig bestimmen zu können? (mit Begründung!)

Lösung:

Da die allgemeine Funktionsvorschrift $f\left(x\right)=ax^3+bx^2+cx+d$ insgesamt vier zu bestimmende Parameter enthält, müssen auch vier unabhängige Bestimmungsgleichungen existieren.

b) Eine Parabel 3. Ordnung berührt die x-Achse im Ursprung. Die Tangente in P (-3 / 0) ist parallel zur Gerade y = 6x.

Lösung:

$$f(x) = ax^3 + bx^2 + cx + d$$

$$f'(x) = 3ax^2 + 2bx + c \quad und \quad f''(x) = 6ax + 2b$$

$$I.) \quad f(0) = d = 0$$

$$II.$$
) $f'(0) = c = 0$

III.)
$$f(-3) = -27a+9b-3c+d = 0$$

$$IV.$$
) $f'(-3) = 27a-6b = 6$

$$\xrightarrow{b,d \ eingesetzt}$$

$$I.) -27a +9b = 0$$

$$II.$$
) $27a-6b = 6$

$$\xrightarrow{I.)+II.)} 3b = 6 \Rightarrow b = 2 \Rightarrow a = \frac{3}{2}$$

$$\Rightarrow f(x) = \frac{3}{2}x^3 + 2x^2$$

c) Die folgenden Ansätzen beschreiben eine Funktion 3. Ordnung. Welche Eigenschaften sind hier verwendet bzw. eingesetzt worden?

(1)
$$f(???) = a+b+c+d = -1$$

(2)
$$f'(???) = 3a + 2b + c = 0$$

(3)
$$f(???) = d = -3$$

(4)
$$f'(???) = 3a-2b+c = 0$$

(5)
$$f''(???) = 2b = 0$$

Lösung:

$$f(x) = ax^3 + bx^2 + cx + d$$

 $f'(x) = 3ax^2 + 2bx + c$ und $f''(x) = 6ax + 2b$

(1)
$$f(1) = a+b+c+d = -1 \Rightarrow P(1 | -1)$$

$$f'(1) = 3a + 2b + c = 0$$

(2) \Rightarrow horizontale Steigung bei x = 1

$$(3) f(0) = d = -3 \Rightarrow Q(0 \mid -3)$$

$$f'(-1) = 3a - 2b + c = 0$$

(4) \Rightarrow horizontale Steigung bei x = -1

(5)
$$f''(0) = 2b = 0 \implies Wendestelle \text{ bei } x = 0$$